Yazılar

Doğalgaz, dünya enerji ihtiyacının büyük kısmını karşılayan, verimli ve temiz bir yakıttır. Ancak doğalgazın güvenli şekilde iletilmesi ve dağıtılması için boru hatlarında kullanılan vanaların kritik bir rolü vardır. Boru hattındaki akışı kontrol etmek, basıncı düzenlemek, acil durumlarda hattı izole etmek veya yönlendirmek için farklı vana türleri kullanılır. Yanlış seçilmiş bir vana, sadece verimliliği değil aynı zamanda güvenliği de ciddi şekilde riske atar.

Doğalgaz Boru Hatları

DOĞALGAZ BORU HATLARINDA KULLANILAN TEMEL VANA TÜRLERİ

  • Küresel Vanalar (Ball Valves): Doğalgaz hatlarında en yaygın kullanılan vana türüdür. Tam geçişli yapısı sayesinde akışta basınç kaybı yaratmaz. Tek çeyrek dönüşle (90°) açılıp kapanabilir, bu da acil durumlarda hızlı müdahale imkânı sağlar. Türkiye’deki BOTAŞ iletim hatlarında ve şehir içi dağıtım şebekelerinde genellikle küresel vanalar tercih edilir.
  • Sürgülü Vanalar (Gate Valves): Büyük çaplı hatlarda izolasyon vanası olarak tercih edilir. Tam açık durumda akışa neredeyse hiç engel olmaz. Açma-kapama süreleri küresel vanalara göre uzundur. 36” ve üzeri çaplı ana iletim hatlarında sürgülü vana kullanımı yaygındır.
  • Kelebek Vanalar (Butterfly Valves): Kompakt tasarımları sayesinde büyük çaplı borularda ekonomik çözümler sunar. Hafif ve düşük maliyetlidir. Daha çok şehir içi dağıtım şebekelerinde ve orta basınçlı hatlarda kullanılır.
  • Kontrol Vanaları (Control Valves): Akış ve basınç regülasyonu için kullanılır. SCADA ve otomasyon sistemleriyle uyumludur. LNG terminallerinde gazın basınç ve debisinin sürekli kontrolü için tercih edilir.
  • Emniyet Vanaları (Safety & Relief Valves): Ani basınç yükselmelerinde hattı korur. Belirli basınç değerinde açılarak gazın dışarı tahliye edilmesini sağlar. API 520/521’e göre tasarlanır.
  • Çek Vanalar (Check Valves): Gazın ters yönde akışını engelleyerek hattı ve ekipmanları korur. Kompresör istasyonlarında mutlaka kullanılır.

MALZEME SEÇİMİ VE STANDARTLAR

Doğalgaz hatlarında kullanılan vanalar, yüksek basınç ve düşük sıcaklıklara dayanıklı olmalıdır.

  • Malzeme Türleri: Karbon çelik (ASTM A105, A216 WCB), düşük sıcaklık çelikleri (ASTM A350 LF2), paslanmaz çelik (AISI 304, 316) – korozyon riski olan ortamlarda.
  • Standartlar: API 6D (boru hattı vanaları için temel standart), ASME B16.34 (basınç-sıcaklık derecelendirmeleri), ISO 14313 (uluslararası boru hattı vana standardı).

VANA SEÇİMİNDE DİKKAT EDİLECEK KRİTERLER

  • Basınç Sınıfı: Vanalar, ANSI Class 150’den 2500’e kadar farklı basınç sınıflarında üretilir. Örnek: 70 bar çalışma basıncına sahip bir iletim hattında genellikle Class 600 vana seçilir.
  • Akış Katsayısı (Cv) ve Debi Hesapları: Vananın akış kapasitesi, Cv değeri ile belirlenir.
    Q = Cv · √(ΔP / G)
    Q: Debi (m³/h), ΔP: Basınç düşümü (bar), G: Gazın özgül ağırlığı.
  • Çalışma Ortamı ve Sıcaklık: Doğalgaz -20 °C ile +60 °C arasında basınç altında taşınır. Elastomer conta ve gövde malzemelerinin bu aralığa uygun olması gerekir.
  • Otomasyon ve Uzaktan Kontrol: Kritik istasyonlarda vanalar aktüatörlü (elektrik, pnömatik, hidrolik) seçilmelidir. Örnek: SCADA ile kontrol edilen şehir giriş istasyonlarında küresel vanalar genellikle pnömatik aktüatörlüdür.
  • Güvenlik ve Bakım Kolaylığı: Vana tasarımında çift blok & bleed (DBB) özelliği tercih edilirse bakım güvenliği sağlanır. Hattın basınç altında test edilmesi daha kolay olur.

ÖRNEK UYGULAMALAR

  • Türkiye – TANAP Projesi: 1.850 km uzunluğundaki Trans Anadolu Doğalgaz Boru Hattı’nda yüksek basınç sınıfına sahip API 6D küresel vanalar kullanılmıştır.
  • Avrupa Dağıtım Şebekeleri: Orta basınçlı şehir içi dağıtım hatlarında kelebek vanalar ve kontrol vanaları tercih edilmektedir.
  • Kompresör İstasyonları: Geri akışa karşı koruma için çek vanalar standart donanım olarak bulunur.

SONUÇ

Doğalgaz boru hatlarında kullanılan vanalar, güvenlik, verimlilik ve süreklilik açısından kritik öneme sahiptir. Küresel vanalar, sürgülü vanalar, kelebek vanalar, kontrol ve emniyet vanaları gibi farklı tipler; hat çapı, basınç sınıfı, debi ihtiyacı ve otomasyon seviyesine göre seçilmelidir. Yanlış seçilen bir vana, sadece ekonomik kayıplara değil aynı zamanda ciddi güvenlik risklerine de yol açabilir. Bu nedenle mühendisler, seçim sürecinde API, ASME ve ISO standartlarını dikkate almalı ve saha koşullarına uygun malzeme seçimini yapmalıdır.

Pnömatik taşıma sistemleri, endüstride toz, granül ve partikül halindeki malzemelerin hava akımı yardımıyla boru hatları üzerinden taşınmasını sağlayan modern çözümlerden biridir. Çimento, gıda, ilaç ve kimya sektörlerinde yaygın olarak kullanılan bu sistemler; kapalı devre, hijyenik ve enerji açısından verimli çözümler sunar.

Bu makalede pnömatik taşımanın temel prensipleri, mühendislik hesapları ve kullanılan vanaların rolü ayrıntılı olarak incelenecektir.

Pnömatik Taşıma Sistemleri ve Bu Sistemlerde Kullanılan Vanalar

PNÖMATİK TAŞIMA PRENSİPLERİ

Pnömatik taşıma, basınç farkı oluşturarak katı parçacıkları hava akımı ile boru hattında hareket ettirme prensibine dayanır. İki ana yöntem vardır:

  • Pozitif Basınçlı Sistemler: Kompresör veya blower ile basınçlı hava üretilir ve malzeme hat içine itilir.
  • Vakumlu Sistemler: Vakum pompaları ile negatif basınç oluşturulur, malzeme hat içine çekilir.

Ayrıca taşıma faz yoğunluğuna göre de sınıflandırılır:

  • Seyrek Faz (Dilute Phase): Malzeme hava içinde süspansiyon halinde, yüksek hızla taşınır. (Genellikle 15–30 m/s hız)
  • Yoğun Faz (Dense Phase): Malzeme tıkaçlar veya tabakalar halinde düşük hızla taşınır. (4–12 m/s hız)

MÜHENDİSLİK HESAPLARI

Taşıma Kapasitesi:

m˙ = ρs · A · vs

  • m˙: Kütlesel debi (kg/s)
  • ρs: Malzeme yoğunluğu (kg/m³)
  • A: Boru kesit alanı (m²)
  • vs: Malzeme taşıma hızı (m/s)

Hava Hacim Debisi:

Q = W / (ρa · va)

  • W: Taşınacak malzeme kütlesi (kg/s)
  • ρa: Havanın yoğunluğu (kg/m³)
  • va: Hava hızı (m/s)

Basınç Kaybı Hesabı:

ΔP = f · (L / D) · (ρa v² / 2)

  • f: Sürtünme katsayısı
  • L: Boru uzunluğu (m)
  • D: Boru çapı (m)
  • ρa: Hava yoğunluğu (kg/m³)
  • v: Hava hızı (m/s)

Mühendislik Notu: Seyrek faz taşıma için hava hızının kritik alt sınır değeri saltation velocity (çökelme hızı) olup genellikle 15–20 m/s arasındadır.

PNÖMATİK TAŞIMA SİSTEMLERİNDE KULLANILAN VANALAR

Pnömatik taşıma sistemlerinde kullanılan vanalar yalnızca akışı yönlendirmez; aynı zamanda hava sızdırmazlığını, malzeme dozajlamasını ve güvenliği sağlar.

  • Kelebek Vanalar: Düşük basınç kaybı ve geniş açıklık sağlar. Sık aç-kapa gerektiren hatlarda idealdir.
  • Sürgülü Vanalar (Slide Gate Valves): Malzeme akışını tamamen kesmek veya yönlendirmek için kullanılır. Çimento ve tahıl hatlarında yaygın.
  • Döner Valfler (Rotary Airlock Valves): Hava sızdırmazlığını sağlarken malzeme girişini kontrollü şekilde yapar. Hem vana hem de dozajlayıcı görevindedir.
  • Çek Valfler: Malzemenin geri akışını engelleyerek hattı korur.
  • Hızlı Aç-Kapa Vanalar: Otomasyon sistemleriyle uyumlu, taşıma hatlarının yönlendirilmesinde kullanılır.

ENERJİ VERİMLİLİĞİ VE OTOMASYON

  • Aktüatörlü Vanalar: Pnömatik veya elektrikli aktüatörlerle kontrol edilen vanalar, taşıma hatlarının otomatik yönetimini sağlar.
  • SCADA/PLC Sistemleri: Tüm vanaların ve blower’ların merkezi kontrolünü mümkün kılar.
  • Enerji Verimliliği: Doğru vana seçimi ve sızdırmazlık, hava kaçağını önleyerek enerji tüketimini %10–15 azaltabilir.

UYGULAMA ALANLARI

  • Gıda Sanayi: Un, şeker, kahve, süt tozu taşınmasında.
  • Kimya ve İlaç: Toz kimyasallar, farmasötik hammaddeler.
  • İnşaat Malzemeleri: Çimento, kireç, alçı.

SONUÇ

Pnömatik taşıma sistemlerinde verimlilik; doğru tasarlanmış boru hattı, uygun basınç kontrolü ve sistemin ihtiyaçlarına göre seçilmiş vanalar sayesinde elde edilir. Kelebek, sürgülü, döner ve çek valfler gibi vanalar, bu sistemlerin güvenilirliğini ve sürekliliğini sağlar. Enerji verimliliği ve otomasyon entegrasyonu sayesinde modern pnömatik taşıma sistemleri hem ekonomik hem de sürdürülebilir bir çözüm haline gelmiştir.

Endüstriyel proseslerde “doğru vana” seçimi; güvenlik, kapasite, ürün kalitesi ve enerji maliyetlerini doğrudan etkiler. Pratikte birden fazla vana tipinin işi görebildiği gri alanlar vardır; buralarda karar, hat boyutu, basınç–sıcaklık, çevrim ömrü, mekanik ayakizi ve açma–kapama hızı gibi parametrelerin teknik ağırlıklandırılmasıyla verilir. Bu yazı, bu beş boyutu derinlemesine ele alıp; küresel (ball), kelebek (butterfly), sürgülü (gate), açı oturmalı (angle seat) ve solenoid vanaları mühendislik açısından karşılaştırır. Girişteki 5 ipucu, genel amaçlı uygulamalar için yol gösterici bir çerçeve sunar.

HAT ÇAPI ≥ 2” İSE: KELEBEK VE SÜRGÜLÜ VANALAR NEDEN ÖNE ÇIKAR?

Özet: 2 inç ve üzeri hatlarda kelebek ve sürgülü vanalar, ölçek büyüdükçe birim maliyet açısından avantajlıdır. Otomasyon tarafında kelebek vanalar aktüatörleştirmesi en kolay seçeneklerden biridir; sürgülü vanalar ise slurry/partiküllü akışkanlarda ve oransal kontrol gereksiniminde tercih edilebilir.

Mühendislik notu – Basınç kaybı: Büyük çaplarda vana iç geometrisinin sürtünme etkisi kritikleşir. Hattın toplam basınç düşümü için Darcy–Weisbach:
ΔP = f · (L/D) · (ρv²/2)

Kelebek vanalarda disk profili ve açıklık açısı, K (yerel kayıp katsayısı) üzerinden ek kayıp yaratır; sürgülü tamamen açıkken kayıp genellikle düşüktür.

YÜKSEK BASINÇ–SICAKLIKTA: KÜRESEL VE AÇI OTURMALI

Özet: Küresel ve açı oturmalı vanalar; paslanmaz gövde ve PTFE gibi düşük sürtünmeli oturma malzemeleri sayesinde yüksek basınç–sıcaklıkta avantaj sağlar. Büyük boy açı oturmalı vanalarda basınç sınıfı düşebilir; bu, boyutla birlikte avantajı sınırlayabilir.

Mühendislik notu – Sızdırmazlık sınıfı ve gövde gerilmesi:

  • ASME/EN sızdırmazlık sınıfları (ör. ISO 5208) uygulama emniyeti için referans alınmalı.
  • İnce cidarlı silindirde çevresel gerilme yaklaşık: σθ ≈ (P·D)/(2t)
  • Basınç sınıfı seçimi yaparken tasarım basıncı + sıcaklıkta malzeme mukavemeti düşüşü birlikte değerlendirilmelidir.

ÇEVRİM ÖMRÜ (CYCLE LIFE): AÇI OTURMALI VE SOLENOID NEDEN “HIZLI HATLAR”IN FAVORİSİ?

Özet: Dolum makineleri gibi yüksek çevrimli hatlarda açı oturmalı (pnömatik) ve solenoid (elektriksel) vanalar en uzun çevrim ömürlerini sunar. Gün içinde birkaç kez çalışan hatlarda ise küresel ve kelebek vanalar ekonomik ve yeterli bir tercihtir.

Mühendislik notu – Darbe yükleri ve su darbesi: Hızlı kapamada su darbesi riskini azaltmak için aktüatör rampa süresi ayarlanmalı, gerekirse non-slam karakterli çözümler düşünülmelidir.

AYAKİZİ (FOOTPRINT) VE AĞIRLIK: SKID TASARIMLARDA AÇI OTURMALI VE SOLENOID

Özet: Skid, konteyner veya makine içi kompakt yerleşimlerde açı oturmalı ve solenoid vanalar, entegre tahrik ve küçük form faktörüyle öne çıkar. Bu, ağırlık merkezini aşağıda tutup titreşim etkisini de azaltabilir.

EN HIZLI AÇMA–KAPAMA: AÇI OTURMALI

Özet: İç aktüasyon mimarisi sayesinde açı oturmalı vanalar, en kısa açma–kapama sürelerini sağlar; yüksek hızlı dolum/dozaj uygulamalarında hacimsel doğruluğu artırır.

HİDROLİK BOYUTLANDIRMA: CV, YETKE (VALVE AUTHORITY) VE KONTROL KARARLILIĞI

Akış kapasitesi (Cv/Kv):

Q = Cv √(ΔP / Gf) (US)
Q = Kv √ΔP (SI)

  • Q: debi, ΔP: vana üzerindeki basınç farkı, Gf: bağıl özgül ağırlık.
  • Küresel ve kelebek vanalarda Cv, açıklığa ve disk/plug geometrisine bağlı olarak hızla değişir; solenoid vanalar küçük Cv ile “aç/kapa” işlevinde üstündür.

Vana yetkesi (N): N = ΔP_vana / ΔP_toplam

Oransal kontrol vanalarında N genelde 0,3–0,7 aralığında hedeflenir; çok düşük yetke kontrol kararlılığını bozar.

MALZEME, SIZDIRMAZLIK VE MEDYA UYUMU

  • Metal gövde + PTFE/PEEK/EPDM/Viton oturma/conta seçimi, sıcaklık–kimyasal uyumuna göre yapılmalı.
  • Slurry/partikül içeren medyada sürgülü ve uygun sedde tasarımları avantajlıdır; açı oturmalı yüksek hızlarda iyi boşaltma davranışı verir.

OTOMASYON, AKTÜATÖR VE ENERJİ

  • Pnömatik (hızlı, güvenli, patlayıcı ortam uyumu), elektrikli (kolay kontrol, düşük bakım), hidrolik (yüksek tork).
  • Büyük çap kelebek ve sürgülü vanalarda otomasyon maliyet/verim açısından genelde daha elverişlidir.

HIZLI KARŞILAŞTIRMA TABLOSU (GENEL UYGULAMALAR İÇİN)

Kriter \ Vana Tipi Küresel Kelebek Sürgülü Açı Oturmalı Solenoid
Çap ≥ 2” maliyet avantajı Orta Yüksek Yüksek Düşük Düşük
Yüksek P/T dayanımı Yüksek Orta Orta Yüksek Düşük–Orta
Çevrim ömrü (yüksek hız) Orta Orta Düşük Çok Yüksek Yüksek
Ayakizi/kompaktlık Orta Orta Düşük Yüksek Yüksek
Açma–kapama hızı Orta Orta–Yüksek Düşük Çok Yüksek Yüksek
Slurry/partiküllü medya Düşük–Orta Orta Yüksek Orta Düşük
Otomasyona uygunluk (maliyet) Orta Yüksek Orta Yüksek Yüksek

ADIM ADIM SEÇİM AKIŞI (PRATİK REHBER)

  1. Hat verileri: Çap, tasarım P/T, debi aralığı, ΔP hedefi.
  2. Medya: Viskozite, partikül/korozyon, temizlik.
  3. Fonksiyon: Aç/kapa mı, oransal kontrol mü, yönlendirme mi?
  4. Hız ve çevrim: Gerekli açma–kapama süresi, günlük çevrim sayısı.
  5. Ayakizi ve montaj: Skid/şase sınırlamaları, bakım erişimi.
  6. Otomasyon: Aktüatör tipi, güvenlik (fail-safe), enerji beslemesi.
  7. Ekonomi: İlk yatırım + işletme + bakım (TCO).

Gri alanlarda, kelebek vs. sürgülü ve açı oturmalı vs. solenoid seçiminde yukarıdaki 5 ipucu hızlı bir “eşleştirme” sağlar.

SONUÇ

Her uygulama için tek bir “doğru vana” yoktur; çoğu zaman birkaç tip işi görebilir. ≥2” hatlarda kelebek/sürgülü, yüksek P/T’de küresel/açı oturmalı, yüksek çevrim ve hız ihtiyacında açı oturmalı/solenoid, kompakt tasarımlarda açı oturmalı/solenoid rasyonel tercihlerdir. Nihai karar; hidrolik hesap, malzeme–medya uyumu, aktüasyon ve TCO birlikte değerlendirilerek verilmelidir. İpuçları genel amaçlıdır; uç veya ekstrem koşullarda özel mühendislik doğrulaması şarttır.